Hypercholesterolemia suppresses inwardly rectifying K+ channels in aortic endothelium in vitro and in vivo.

نویسندگان

  • Yun Fang
  • Emile R Mohler
  • Esther Hsieh
  • Hashim Osman
  • Seyed M Hashemi
  • Peter F Davies
  • George H Rothblat
  • Robert L Wilensky
  • Irena Levitan
چکیده

Inwardly rectifying K+ (Kir) channels are responsible for maintaining endothelial membrane potential and play a key role in endothelium-dependent vasorelaxation. In this study, we show that endothelial Kir channels are suppressed by hypercholesterolemic levels of lipoproteins in vitro and by serum hypercholesterolemia in vivo. Specifically, exposing human aortic endothelial cells to acetylated low-density lipoprotein or very low density lipoprotein resulted in a time- and concentration-dependent decrease in Kir current that correlated with the degree of cholesterol loading. The suppression was fully reversible by cholesterol depletion. Furthermore, a decrease in Kir current resulted in depolarization of endothelial membrane potential. Most important, the flow sensitivity of Kir currents was also impaired by cholesterol loading. Specifically, flow-induced increase in Kir current was suppressed by 70%, and flow-induced hyperpolarization was almost completely abrogated. Furthermore, we show that hypercholesterolemia in vivo also strongly suppresses endothelial Kir currents and causes a shift in endothelial membrane potential, as determined by comparing the currents in aortic endothelial cells freshly isolated from healthy or hypercholesterolemic pigs. Therefore, we suggest that suppression of Kir current is one of the important factors in hypercholesterolemia-induced endothelial dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input

Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...

متن کامل

Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input

Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...

متن کامل

Hypercholesterolemia‐Induced Loss of Flow‐Induced Vasodilation and Lesion Formation in Apolipoprotein E–Deficient Mice Critically Depend on Inwardly Rectifying K+ Channels

BACKGROUND Hypercholesterolemia-induced decreased availability of nitric oxide (NO) is a major factor in cardiovascular disease. We previously established that cholesterol suppresses endothelial inwardly rectifying K+ (Kir) channels and that Kir2.1 is an upstream mediator of flow-induced NO production. Therefore, we tested the hypothesis that suppression of Kir2.1 is responsible for hypercholes...

متن کامل

Saffron Induced Relaxation in Isolated Rat Aorta via Endothelium Dependent and Independent Mechanisms

Crocus sativus L. (saffron) is a widely used food additive for its color and taste. The hypotensive effects of saffron have been shown in previous studies. The aim of this study was to evaluate the mechanism of vasodilatory effects induced by saffron on isolated rat aorta.To study the vasodilatory effects of saffron aqueous extract (0.5, 1 and 2 mg/mL), isolated rat thoracic aorta rings were co...

متن کامل

Saffron Induced Relaxation in Isolated Rat Aorta via Endothelium Dependent and Independent Mechanisms

Crocus sativus L. (saffron) is a widely used food additive for its color and taste. The hypotensive effects of saffron have been shown in previous studies. The aim of this study was to evaluate the mechanism of vasodilatory effects induced by saffron on isolated rat aorta.To study the vasodilatory effects of saffron aqueous extract (0.5, 1 and 2 mg/mL), isolated rat thoracic aorta rings were co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 98 8  شماره 

صفحات  -

تاریخ انتشار 2006